Abstract
The development of atom-economical catalytic asymmetric reactions based on two distinct sets of catalyst, a rare earth metal/amide-based ligand catalyst and a soft Lewis acid/hard Brønsted base catalyst, is reviewed. These catalytic systems exhibit high catalytic activity and stereoselectivity by harnessing a cooperative catalysis through hydrogen bond/metal coordination and soft-soft interactions/hard-hard interactions, respectively. The effectiveness of these cooperative catalysts is clearly delineated by the high stereoselectivity in reactions with highly coordinative substrates, and the specific activation of otherwise low-reactive pronucleophiles under proton transfer conditions. The rare earth metal/amide-based ligand catalyst was successfully applied to catalytic asymmetric aminations, nitroaldol (Henry) reactions, Mannich-type reactions, and conjugate addition reactions, generating stereogenic tetrasubstituted centers. Catalytic asymmetric amination and anti-selective catalytic asymmetric nitroaldol reactions were successfully applied to the efficient enantioselective synthesis of therapeutic candidates, such as AS-3201 and the β(3)-adrenoreceptor agonist, showcasing the practical utility of the present protocols. The soft Lewis acid/hard Brønsted base cooperative catalyst was specifically developed for the chemoselective activation of soft Lewis basic allylic cyanides and thioamides, which are otherwise low-reactive pronucleophiles. The cooperative action of the catalyst allowed for efficient catalytic generation of active carbon nucleophiles in situ, which were integrated into subsequent enantioselective additions to carbonyl-type electrophiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.