Abstract
The development of astroglial cells and the effect of the retinohypothalamic tract on it were studied by vimentin and glial fibrillary acidic protein (GFAP) immunocytochemistry in the suprachiasmatic nucleus (SCN) of the rat. At the embryonic stage, vimentin-immunoreactive (VIM-IR) radial glia, precursors of astrocytes, were dominant. However, their filaments vanished in the first few postnatal days. Instead of VIM-IR glial filaments, GFAP-immunoreactive (GFAP-IR) astrocytes appeared at E20 and grew rapidly from the P3 stage. GFAP immunoreactivity in the ventrolateral portion of the SCN (VLSCN) was measured using a computer-assisted image analyzing system. In normal rats, GFAP immunoreactivity showed a stepwise pattern with two slopes at P3–P4 and P20–P25. Bilaterally eye-enucleated rats operated on the day of birth showed lower GFAP immunoreactivity than normal rats and the GFAP immunoreactivity did not increase between P20 and P25 when GFAP-IR glial processes rapidly expand. Electron microscopic investigation at P50 (adult stage) revealed that neurons in the VLSCN had often direct apposition without astroglial processes and the frequency of this finding was significantly higher in eye-enucleated rats than in the control rats. These findings strongly suggest that the postnatal development of astroglial elements, particularly the expansion of GFAP-IR processes in the SCN, is regulated by retinohypothalamic projection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.