Abstract
Inorganic sulfur compounds, such as S(2-), SO(3)(2-) and S(2)O(3)(2-), are produced from sulfur- containing amino acids as intermediary metabolites in mammalian tissues through complex pathways and are ultimately incorporated into sulfate. Reduced sulfur is also produced via the desulfuration of cysteine by several sulfurtransferases present in mammalian tissues; these enzymes include gamma-cystathionase (gamma-CST), and 3-mercaptopyruvate sulfurtransferase (3-MST). This reduced sulfur is then incorporated into pools of active reduced sulfur (sulfane sulfur; polysulfides, polythionates, thiosulfate, thiosulfonates and elemental sulfur) that are involved in the detoxication of cyanide and in the biosynthesis of iron-sulfur cluster. Sulfane sulfur is labile and is reduced to H(2)S by reducing agents. The physiological function of these sulfur species is less clear. We have found that a reduced sulfur species is commonly present in mammalian sera and tissues as a high molecular weight material and as both a high and a low molecular weight material, respectively; we designated this sulfur species as "bound sulfur." Bound sulfur can be easily liberated as sulfide by reduction with DTT. This review describes sensitive and specific assay method for determining the presence of inorganic sulfur compounds as well as bound sulfur and related sulfurtransferases in biological samples. The physiological functions of bound sulfur in rat tissues were also evaluated using these assay methods. Bound sulfur was found to be located primarily in the rat liver cytosolic fraction in the form of high molecular weight components. The capacity of bound sulfur production was enriched in the cytosol fraction and depended on gamma-CST. Bound sulfur also affected redox regulation by modifying active thiol residues in some liver cytosol enzymes and effectively inhibited cytochrome P-450-dependent lipid peroxidation induced by CCl(4) and t-BuOOH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.