Abstract

This paper describes the development of artificial neural network (ANN) models and multi-response optimization technique to predict and select the best welding parameters during Hybrid Laser Arc Welding (HLAW), Hot Wire Cladding (HWC) and Cold Metal Transfer (CMT) of ZE41-T5 alloy. To predict the performance characteristics, namely; weld depth, underfill, percentage defect and total accumulated pore length, artificial neural network models were developed using Levenberg-Marquardt algorithm. ZE41-T5 was selected as the material to be welded with AZ61 alloy as filler material. Experiments were planned using a 3-factor central composite design and were performed under different welding conditions of laser power, travel speed, wire feed rate, current and frequency. The responses were optimized concurrently using ANN Levenberg-Marquardt algorithm. Finally, experimental confirmations were carried out to identify the effectiveness of ANN. A good agreement was obtained between the experimental output data and ANN predicted results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call