Abstract

Cell membrane chromatography (CMC) is an ideal method for screening potential active components acting on target cell membranes from a complex system, such as herbal medicines. But due to the decay and falling-off of membranes, the CMC column suffers from short life span and low reproducibility. This has greatly limited the application of this model, especially when the cell materials are hard to obtain. To solve this problem, a novel type of (3-aminopropyl)triethoxysilane (APTES)-decorated silica gel was employed. The silica gel was decorated with aldehydes with the help of APTES, which react with the amino groups on cell membranes to form a covalent bond. In this way, cell membranes were immobilized on the surface of silica gel, so it is not easy for membranes to fall off. According to our investigation, the column life of the APTES-decorated group was prolonged to more than 12 days, while the control group showed a sharp decline in column efficiency in the first 3 days. To verify this model, a novel APTES-decorated HepG2 cancer stem cell membrane chromatography (CSCMC) was established and applied in a comprehensive two-dimensional chromatographic system to screen potential active components in Salvia miltiorrhiza. As a result, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I were retained on this model and proved to be effective on HepG2 cancer stem cells by the following cell proliferation and apoptosis assay, with IC50 of 10.30 μM, 17.85 μM, and 2.53 μM, respectively. This improvement of CMC can significantly prolong its column life span and broaden the range of its application, which is very suitable for making invaluable or hard-to-obtain cell materials, such as stem cells, for specific drug screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.