Abstract

The purpose of the present study is to synthesize a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer capable of being immobilized on the tooth surface to prevent oral bacterial adhesion. The strategy is to develop an MPC-based polymer with Ca2+-binding moieties, i.e., phosphomonoester groups, for stronger binding with hydroxyapatite (HA) of the tooth surface. To this end, a 2-methacryloyloxyethyl phosphate (MOEP) monomer was synthesized and copolymerized with MPC by free radical polymerization. The coating efficiency of the synthesized polymer, MPC-ran-MOEP (abbreviated as PMP) with varied composition, onto a HA surface was estimated by means of contact angle measurement and X-ray photoelectron spectroscopy. The anti-biofouling nature of PMP-coated HA surfaces was estimated by analyzing protein adsorption, cell adhesion, and Streptococcus mutans adhesion. As a result, HA surface coated with a copolymer containing around 50% MPC (PMP50) showed the best performance in preventing protein adsorption and the downstream cell and bacterial adhesion. Statement of SignificancePreparation of anti-biofouling surface on the tooth enamel is the key technique to prevent dental and periodontal diseases, which are closely related with the biofilm formation that induced by the adsorption of salivary proteins and the adhesion of oral bacteria on the tooth surface. In this research, a PMP copolymer with an optimized ratio of zwitterionic and Ca2+-binding moieties could form a highly effective and robust anti-biofouling surface on HA surfaces by a simple coating method. The PMP-coated surface with high stability can provide a new strategy for an anti-adsorptive and anti-bacterial platform in dentistry and related fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call