Abstract

Recently, TiO2 crystals have been modified by transition-metal dopants with different physicochemical structures to attain distinguished properties. Considering the similar ionic sizes of V4+ (0.058 nm) and Ti4+ (0.061 nm), vanadium in the +4 state can be effectively incorporated into the crystal lattice of TiO2 to tune the band gap energy by creating an impurity energy level (V5+/V4+) below the conduction band (2.1 eV) and retaining the anatase phase. In vanadium-incorporated TiO2 (V/TiO2), V4+ is a good dopant candidate as it can increase the lifetime of the charge carrier and reduce the electron-hole recombination rate, which results in high antibacterial activity under visible light irradiation. The present study explores the V/TiO2-based hot-dip zinc coating with enhanced electrochemical properties and long-term stability for combating biocorrosion. All the composites and the coatings are characterized by different techniques, including X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray analysis, confocal laser scanning microscopy, optical surface profilometry, and X-ray photoelectron spectroscopy. The biofilm formation assay and the cell viability assay reveal that the tuned composition of the V/TiO2-based hot-dip zinc coating effectively kills the adherent bacteria and inhibits biofilm formation on the surface. The high-charge-transfer resistance (225.67, 223.63, and 242.35 Ω cm2) and the high-inhibition efficiency (92.24, 92.30, and 92.02%) of the tuned composition of the V/TiO2-based hot-dip zinc coating confirm its efficient and sustainable antibiocorrosion performance and long-term stability even after an exposure period of 21 days in different bacterial environments. With the inherent antibacterial properties and antibiocorrosion performance of the developed V/TiO2-based hot-dip zinc coating, the mild steel substrates can find potential application in different fields, including aquatic and marine environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call