Abstract
The European directive 2000/53/EC limits the use of Cr(VI) in vehicle manufacturing. Although a maximum of 2g of Cr(VI) was authorised per vehicle for corrosion prevention coatings of key components, since July 2007 its use has been prohibited except for some particular applications. Therefore, the objective of this work was to develop direct analytical procedures for Cr(VI) determination in the different steel coatings used for screws. Instead of working directly with screws, the optimisation of the procedures was carried out with metallic plates homogeneously coated to improve the data comparability. Extraction of Cr(VI) from the metallic parts was performed by sonication. Two extraction solutions were tested: a direct water extraction solution used in standard protocols and an ammonium/ammonia buffer solution at pH 8.9. The extracts were further analysed for Cr speciation by high-performance liquid chromatography (HPLC) inductively coupled plasma (ICP) atomic emission spectrometry or HPLC ICP mass spectrometry depending on the concentration level. When possible, the coatings were also directly analysed by solid speciation techniques (X-ray photoelectron spectroscopy, XPS, and X-ray absorption near-edge structure, XANES) for validation of the results. Very good results between the different analytical approaches were obtained for the sample of coating made up of a heated paint containing Zn, Al and Cr when using the extracting buffer solution at pH 8.9. After a repeated four-step extraction procedure on the same portion test, taking into account the depth of the surface layer reached, good agreement with XPS and XANES results was obtained. In contrast, for the coatings composed of an alkaline Zn layer where Cr(VI) and Cr(III) are deposited, only the extraction procedure using water allowed the detection of Cr(VI). To elucidate the Cr(VI) reduction during extraction at pH 8.9, the reactivity of Cr(VI) towards different species of Zn generally present in the coatings (metallic Zn and zinc oxide) was studied. The results showed that metallic Zn rapidly reduces Cr(VI), whereas this reaction is less evident in the presence of zinc oxide. Water was then retained for coatings containing metallic Zn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.