Abstract

Synchrotron radiation facilities provide highly polarized x-ray beams across a wide energy range. However, the exact type and degree of polarization vary according to the beamline and experimental setup. To accurately determine the angle and degree of linear polarization, a portable x-ray polarimeter has been developed. This setup consists of a silicon drift detector that rotates around a target made of high-density polyethylene. The imprint generated in the angular distribution of scattered photons from the target at a 90-degree angle between the incident x-rays and detector has been exploited to determine the beam polarization. Measurements were conducted at the GALAXIES beamline of the SOLEIL synchrotron. The expected angular distribution of the scattered photons for a given beam polarization was obtained through simulations using the Geant4 simulation toolkit. An excellent agreement between simulations and the collected data has been obtained, validating the setup and enabling a precise determination of the beam polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.