Abstract

AbstractAn unmanned vehicle has been developed for dual use as both an aircraft and a submersible. To achieve long-range emplacement of a highly maneuverable underwater asset to a target environment, the Flimmer (Flying-Swimmer) vehicle is designed for both high-speed flight and low-speed swimming. Building on previous research in bioinspired propulsion and control systems, the vehicle employs a unique set of artificial flapping fins for underwater maneuvering, which must be considered when evaluating the flight and water landing capabilities. This paper describes the computational analysis and experimental results for all three phases of vehicle operation—flight, landing, and swimming. Computational fluid dynamics simulation results predict aero- and hydrodynamic characteristics and demonstrate landing loads on and trajectory of the vehicle. Experimental data demonstrate flight and swimming performance and validate the computational results, and experimental testing of water landing provides a comparison with computations. Results and analyses of the Flimmer vehicle performance demonstrate the operational capabilities of an unmanned hybrid vehicle for long-range flight and low-speed swimming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.