Abstract

This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.