Abstract

A phased array ultrasonic inspection (PAULI) system is being developed to obtain electronically scanned ultrasonic images of the inside of nuclear power plant components for nondestructive evaluation. The development strategy of PAULI system was the modification of a medical ultrasound imaging system that had 64 individual transceiver channels. Optimization of array transducers has been also pursued based on the systematic investigation of the radiation beam field simulated by the use of the boundary diffraction wave models. 7.5 MHz phased array transducers was, then, fabricated and tested with the carbon steel specimen having side-drilled holes. For the nondestructive tests on power plant component, a sample mockup of turbine blade root with EDM notches was fabricated and the detection capability was demonstrated. The developed system can provide electronically scanned ultrasonic images in real time fashion and greatly enhance the efficiency and reliability in the flaw detection and location in comparison with the classical ultrasonic testing (UT) using A-scan signals. For the flaw classification, the analysis of the electronically scanned ultrasonic images was not sufficient at this moment but analysis of features obtained from A-scan signals of flaws at the various steering angles showed the potential capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.