Abstract

BackgroundInner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially.MethodA high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier.ResultsIn comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier.ConclusionThis paper presents the design and evaluation of an ultra-low noise and miniaturized bio-signal amplifier tailored for EVestG and ECOG. The increase in SNR for the implemented amplifier will reduce variability associated with bio-features extracted from such recordings; hence sensitivity and specificity measures associated with disease classification are expected to increase. Furthermore, immunity to PLI has enabled EVestG and ECOG recordings to be carried out in a non-shielded clinical environment.

Highlights

  • Development of low noise bio-signal acquisition devices have evolved substantially since the inception of the amplified electrocardiogram in the late 1940’s [1], due to the demand for high resolution electrophysiological measurements and increased patients’ safety [2]

  • In comparison to the currently used device, power line interference (PLI) is significantly suppressed by the designed prototype, and the prototype amplifier generated noise was measured to be 4.8 nV= Hz @ 1 kHz (0.45 μVRMS with bandwidth 1p0ffiffiHffiffiffizffi -10 kHz), which is lower than the currentlypusffieffiffiffidffi device generated noise of 7.8 nV=

  • Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier

Read more

Summary

Introduction

Development of low noise bio-signal acquisition devices have evolved substantially since the inception of the amplified electrocardiogram in the late 1940’s [1], due to the demand for high resolution electrophysiological measurements and increased patients’ safety [2]. One such method that demands a high resolution signal acquisition protocol is Electrocochleography (ECOG), a specialized technique that captures electrical activity from the cochlea, where the signal of interest can range from 0.1-2 μV for the extratympanic approach [3]. EVestG recordings are currently obtained using a commercially available, bench-top, low noise bio-signal amplifier in a sound attenuated electrically shielded chamber to reduce background interference. The algorithm’s FP detection accuracy is found to be largely dependent on three main types of interference present in the recording [15]: 1) biological signal interference within the bandwidth 40-500 Hz that is comprised predominantly of muscle activity [5]), 2) power line interference (PLI) (predominantly odd harmonics), and 3) system generated noise (where effects are significant for frequencies above 500 Hz)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call