Abstract
Lentiviral vectors are attractive candidates for gene therapy because of their ability to integrate into nondividing cells. To date, conventional HIV-1-based vectors can be produced at higher titers, but concerns regarding their safety for human use exist because of the possibility of recombination leading to production of infectious virions with pathogenic potential. Development of lentivirus vectors based on nonhuman lentiviruses constitutes an active area of research. We described a novel HIV-SIV hybrid vector system in which an HIV-1-derived transfer vector is encapsidated by SIVmac1A11 core particles and pseudotyped with VSV glycoprotein G. In an effort to further develop this vector system, we modified the packaging plasmid by deletion of the SIV accessory genes. Specifically, versions of the packaging plasmid (SIVpack) lacking vif, vpr, vpx, and/or nef were constructed. Our results indicate that, as with HIV-1-based packaging plasmids, deletion of accessory genes has no significant effect on transduction in either dividing or nondividing cells. The SIV packaging plasmid was also modified with regard to the requirement for RRE and rev. Deletion of the RRE and rev from SIVpack led to dramatic loss of transduction ability. Introduction of the 5' LTR from the spleen necrosis virus to packaging plasmids lacking RRE/Rev was then sufficient to fully restore vector titer. A minimal SIV transfer vector was also developed, which does not require RRE/Rev and exhibits no reduction in transduction efficiency in two packaging systems. The SIV-based vector system described here recapitulates the biological properties of minimal HIV-1-derived systems and is expected to provide an added level of safety for human gene transfer. We suggest that the SIV-derived vector system will also be useful to deliver anti-HIV-1 gene therapy reagents that would inhibit an HIV-1-derived vector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.