Abstract

IntroductionAn ideal organ‐specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost‐effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom.MethodsCardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N‐01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D‐isosurface of heart‐shaped shell, while two other removable inserts were included using computer‐aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D‐printed phantom. The 3D‐printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi‐detector scanner at 120‐kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real‐patient and Catphan® 500 phantom.ResultsThe output of the 3D‐printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost‐effective. HU values of the filling materials were comparable to the image datasets of real‐patient and Catphan® 500 phantom.ConclusionsA novel and cost‐effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies.

Highlights

  • An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images

  • The physical models and the axial CT images of the completed 3D-printed cardiac insert phantom are illustrated in Figures 4 and 5 respectively

  • The cost of the phantom production was approximately US$70, which covered the costs of the Acrylonitrile butadiene styrene (ABS) filament and the internal materials used

Read more

Summary

Introduction

An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Methods: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3Disosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. Conclusions: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer This suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. One of the most common phantoms used for the investigations of CT protocols is the anthropomorphic chest phantom (Kyoto Kagaku, Japan)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call