Abstract

Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call