Abstract

SARS-COV-2 is the causative agent of an acute respiratory syndrome called Coronavirus disease 2019 (COVID-19) with a varying mortality rate from 2019 to 2022. There are several measures for control and prevention of Covid-19 including using mask, vaccine injections, as well as screening the potential cases. We aimed to design and develop a molecular method (RT-LAMP) for detecting coronavirus in biological samples that is cheaper, faster and easier than conventional molecular methods. In this study, various reaction components were explored to make the optimal combination of an RT-LAMP master mix composition. The results revealed the ability of this RT-LAMP test in specifically identifying 100 copies of mixture of N and E genes in just 30–45 min. This study demonstrated the reliable performance of the RT-LAMP method for the detection of SARS-COV-2 in biological samples. Given the significant advantages of this method compared to the gold standard qRT-PCR, it can be employed as a promising tool for the diagnosis of coronavirus as well as other pathogenic viruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call