Abstract

Ground vibrations caused by blasting operations in cement canisters is among the main mining issues that cause significant disruptions to nearby buildings and infrastructure. This research was performed in a limestone quarry situated southeast of Helwan City, Egypt, to investigate the impact of ground motion vibration due to cement blast action in limestone rocks. To reduce the environmental impact of quarry blasting, continuous monitoring, and accurate medium's peak particle velocity (PPV) assessment are required. Recently, machine learning (ML) models are employed in diverse applications. The default hyperparameters of such models must be modified to fit the problem concerned. The hyperparameters optimization for ML models impacts the employed model's performance and efficiency. In this research, different regression models are implemented for predicting the PPV values. A dataset representing 1438 blast incidents in the Helwan area was built and utilized to evaluate the considered ML models. This dataset incorporates the relationship of the ground vibration amplitude to both the explosive charge weight per delay and distance from the blast. The predictive models' output performance has been evaluated using the root-mean-squared error (RMSE) and the coefficient of determination ($R^{2}$ ). The PPV dataset has been divided into training and testing data to produce statistically significant results and to make the dataset more representative to avoid overfitting. The utilized test PPV dataset acts as a proxy for any new PPV data prediction. There was evidence of higher performance in the developed Decision Trees model with the lowest RMSE and the highest $R^{2}$ on training and testing data. The decision tree is, therefore, an acceptable algorithm for the construction of a predictive PPV model for other quarry blasting areas with conditions identical to those in Helwan. Finally, comparative experimental results have shown that optimized models can predict PPV values with lower errors and greater prediction accuracy.

Highlights

  • Egypt is witnessing an uptick in investments in the economy and natural resources sections

  • Blasting operations are crucial tasks that require careful control and accurate predictions to ensure the safety of the surrounding structures, especially against ground vibration

  • We successfully developed a novel hybrid model for estimating blast-induced peak particle velocity (PPV) in fragmenting rocks with high accuracy

Read more

Summary

Introduction

Egypt is witnessing an uptick in investments in the economy and natural resources sections. Egypt is one of the largest cement producers in the world, with over 50 million tons of cement being manufactured annually. This makes Egypt a leading country in the Middle East, Africa and the Arabian region. Cement industry is concentrated in several zones. In Egypt, such as Ain Elsokna which contain three plants, Beni-Suif zone which contains five plants. Quarrying operations, cement production, have increased to supply the necessary construction materials. The use of explosives to conduct blasting operations contributes to increasing the environmental effects of such quarries [1]. Quarry explosions cause stress in the terrain and greatly affect the nearby structural foundations

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.