Abstract

A key component in the Integrated Radio and Optical Communications project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center (GRC) is the radio frequency (RF) and optical software defined radio (SDR). A NASA RF SDR might consist of a general purpose processor to run the Space Telecommunications Radio System (STRS) Architecture for radio command and control, a reconfigurable signal processing device such as a field programmable gate array (FPGA) which houses the waveform, and a digital to analog converter for (DAC) transmitting data. Prior to development, SDR architecture trades on how to combine the RF and optical elements were studied. A modular architecture with physically separate RF and optical hardware slices was chosen and the optical slice of an SDR was designed and developed. The Harris AppSTAR(TM) platform, which consists of an FPGA processing platform with a mezzanine card targeted for RF communications, was used as the base platform in prototyping the optical slice. A serially concatenated pulse position modulation (SCPPM) optical waveform was developed. The waveform follows the standard described in the Consultative Committee for Space Data Systems (CCSDS) Optical Communions Coding and Synchronization Red Book. A custom optical mezzanine printed circuit board card was developed at NASA GRC for optical transmission. The optical mezzanine card replaces the DAC, which is used in the transmission of RF signals. This paper describes RF and optical SDR architecture trades, the Harris AppSTAR(TM) platform, the design of the SCPPM waveform, and the development of the optical mezzanine card.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call