Abstract
Existing handwriting recognition solution on mobile app provides off premise service which means the handwriting is processed in overseas servers. Data sent to abroad servers are not under our control and could be possibly mishandled or misused. As recognizing handwriting is a complex problem, deep learning is needed. This research has the objective of developing an on premise Indonesian handwriting recognition using open source deep learning solution. Comparison of various deep learning solution to be used in the development are done. The deep learning solution will be used to build architectures. Various database format are also compared to decide which format is suitable to gather Indonesian handwriting database. The gathered Indonesian handwriting database and built architectures are used for experiments which consists of number of Convolutional Neural Network (CNN) layers, rotation and noise data augmentation, and Gated Recurrent Unit (GRU) vs Long Short Term Memory (LSTM). Experiment results shows that rotation data augmentation is the parameter to be change to improve word accuracy and Character Error Rate (CER). The improvement is 64.8% and 23.2% to 69.6% and 20.6% respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Information, Communication and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.