Abstract

Polymerase proofreading-associated polyposis (PPAP) is a disease caused by germline variations in the POLE and POLD1 genes that encode catalytic subunits of DNA polymerases. Studies of cancer genomes have identified somatic mutations in these genes, suggesting the importance of polymerase proofreading of DNA replication in suppressing tumorigenesis. Here, we identified a germline frameshift variation in the POLE gene (c.4191_4192delCT, p.Tyr1398*) in a case with multiple adenomatous polyps and three synchronous colon cancers. Interestingly, one of the colon cancers showed microsatellite instability-high (MSI-H) and another microsatellite stable. Immunohistochemical staining revealed that the MSI-H tumor cells lost the expression of MLH1 protein. Whole genome sequencing of the MSI-H tumor did not find pathogenic somatic mutations in mismatch repair genes but found frameshift mutations in the TET genes that catalyze 5-methylcytosine hydroxylation. Bisulfite sequencing of the tumor corroborated an increase in the number of hypermethylated regions including the MLH1 promoter. These data indicate that PPAP patients might develop MSI-positive tumors through epigenetic silencing of MLH1. These findings will contribute to comprehensive understanding of the molecular basis of tumors that involve deficiency of proofreading activity of DNA polymerases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call