Abstract

Depth of field effects in laser sheet imaging were considered for droplet sizing of a pre-swirl spray. A pre-swirl spray is formed before the hollow-cone type main-swirl spray from a D.I. gasoline injector, and shows transient characteristics with high axial velocity. A microscopic imaging technique was applied to obtain high spatial resolution LIF tomograms of the pre-swirl spray. A 1 mm thick Nd:YAG laser sheet was used as a light source to make the LIF tomograms that were imaged using a high-resolution CCD camera. The droplet sizing of the pre-swirl spray was carried out using an image processing technique. In the image processing procedure, the laser sheet-straddling large-sized droplets were carefully taken into account to remove the errors caused by the depth of field effects from the limited thickness and the energy distribution of the laser sheet. The mean intensity of the individual droplets and the line profile of the LIF signal around the droplet edge were inspected to screen the laser sheet-straddling large-sized droplets. In order to consider the effects of the size-dependent LIF signal intensity, the size-classified or ensemble-averaged mean intensity of the individual droplets was introduced. The mean droplet sizes such as AMD and SMD were calculated using only screened droplets, and they slightly increase before considering the depth of field effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call