Abstract

Radar remote sensing has great potential to determine the extent and properties of snow cover. Availability of space-borne sensor dual-polarization C-band data of environmental satellite- (ENVISAT-) advanced synthetic aperture radar (ASAR) can enhance the accuracy in measurement of snow physical parameters as compared with single polarization data measurement. This study shows the capability of C-band synthetic aperture radar (SAR) data for estimating dry snow density over snow covered rugged terrain in Himalayan region. The snow density is an important parameter for the snow hydrology and avalanche forecasting related studies. An algorithm has been developed for estimating snow density, based on snow volume scattering and snow-ground scattering components. The radar backscattering coefficients of both horizontal–horizontal (hh) and vertical–vertical (vv) polarization and incidence angle are used as inputs in the algorithm to provide the snow dielectric constant which can be used to derive snow density using Looyenga's semi-empirical formula. Comparison was made between snow density estimated from algorithm using ENVISAT-ASAR hh and vv polarization data and the measured field value. The mean absolute error between estimated and measured snow density was found to be 0.024 g/cm3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.