Abstract

The rupture of an intracranial aneurysm can cause spontaneous subarachnoid hemorrhage and result in sudden death. A large portion of intracranial aneurysms occurs near the center of the head, at the skull base, which poses significant technical challenge to neurosurgeons due to limited accessibility. The utilization of angiography is prominent during the treatment of intracranial aneurysms. However, malapposition of stent or incomplete packing of the intracranial aneurysm can be difficult to assess with angiography, and could lead to severe postoperative complications. As a result, angiography may not be sufficient in determining the risk of rupture as the compensatory mechanisms are known to occur at the microstructural level due to the local hemodynamics in the arterial lumen, as well as in evaluating the intraoperative treatment. In this work, we describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT). Sterile intravascular fiber-optic catheters can be introduced in the artery to detect blood flow. Prior to this work, limited investigations of catheter based Doppler OCT (DOCT) were reported. A novel signal processing technique was developed to further reduce the effect of Doppler noise within a catheter based DOCT system. This technique consisted of splitting the interferogram of an OCT signal prior to estimating the Doppler shift. This split spectrum DOCT (ssDOCT) method was evaluated through flow models and porcine models, as well as through the correlation between ssDOCT algorithm and computational fluid dynamic (CFD) models. It was observed that ssDOCT provided improved Doppler artefact suppression over the conventional DOCT technique. ssDOCT also provided the ability to estimate lower velocities within the DOCT image to measure the hemodynamic patterns around stent struts in both the internal carotid and patient specific flow phantoms. An OCT imaging study was also conducted consisting of surgically resected human intracranial aneurysms. Further enhancement of the detection of these key morphological structures was demonstrated by an optical-attenuation imaging variant of OCT. The presented techniques could provide further insights to the cause of intracranial aneurysm rupture and vascular healing mechanisms.

Highlights

  • This introductory chapter provides the background and motivations for this thesis, including the prevalence of intracranial aneurysms, current treatment options, optical coherence tomography, and Doppler optical coherence tomography as an imaging modality capable of measuring and monitoring hemodynamic changes.1.1 Intracranial aneurysm incidence, mortality and treatment optionsOne of the most catastrophic events that could occur in the neurovascular system is the rupture of an intracranial aneurysm

  • We describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT)

  • The OCT rotary catheter was inserted into a vessel and images were acquired during blood flow

Read more

Summary

Data acquisition and processing scheme

The OCT rotary catheter was inserted into a vessel and images were acquired during blood flow. Multiple narrow window bands with different center frequencies were multiplied with the interferogram These windowed spectra were stored into the corresponding windowed band frame and the mean phase shift was calculated by evaluating the phase difference between axial scans within the frame (Equation 2.23) [4]. 4.5 (a) Structural OCT image of a patient-specific flow phantom during the diastolic flow. (c) Structural OCT image of a patient-specific flow phantom during the systolic flow. (d) The corresponding ssDOCT image demonstrated higher flow velocity (increased phase contours). 4.8 (a) The ssDOCT image within an elliptical aneurysm model acquired just after peak velocity. (b) The corresponding CFD elliptical aneurysm model at the location of a vortex. (f) The corresponding OCT-OA image consisted of a layered structure. Scale bar 500 μm [1]. (Reprinted with permission of the Optical Society of America) . . . 69

Introduction
Intracranial aneurysm incidence, mortality and treatment options
INTRODUCTION
Methods for monitoring neurovascular hemodynamic blood flow
Optical Coherence Tomography
Doppler Optical Coherence Tomography
Thesis and Scientific Contributions
Outline
Intravascular Doppler optical coherence tomography
Intravascular Doppler optical coherence tomography system
System characterization for Doppler imaging
Phantom flow measurements
In vivo imaging of porcine animal model
Split spectrum Doppler optical coherence tomography
Split spectrum Doppler optical coherence tomography theory
Doppler noise floor analysis
Low velocity flow phantom analysis
In vivo split spectrum Doppler optical coherence tomography imaging
Clinical problem of carotid stenting
In vivo split spectrum Doppler optical coherence tomography imaging during carotid stenting
Computational fluid dynamics of stented carotid artery
Intracranial aneurysm flow phantoms
Simplified intracranial aneurysm flow phantoms
Patient specific intracranial aneurysm flow phantom
Imaging of a simplified intracranial aneurysm flow phantom
Imaging of patient specific intracranial aneurysm flow phantom
Computational fluid dynamic models of intracranial aneurysm
Simplified elliptical shaped aneurysm simulations
Patient specific aneurysm simulations
Histological findings
Study limitations
The natural history of intracranial aneurysms
Human specimens
Optical coherence tomography imaging
Correlation between optical coherence tomography imaging and histology
Ex vivo optical coherence tomography - optical attenuation imaging
Medulloblastoma animal model
Optical coherence tomography - optical attenuation imaging
Medulloblastoma and optical coherence tomography - optical attenuation
Intracranial aneurysm and optical coherence tomography - optical attenuation
Limitation of optical coherence tomography - attenuation imaging
Concluions
Future work
Findings
The Optical Society of America (Optics Express and Biomedical Optics Express)
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call