Abstract

Successful weaning from prolonged mechanical ventilation (MV) is an important issue in respiratory care centers (RCCs). Delayed or premature extubation increases both the risk of adverse outcomes and healthcare costs. However, the accurate evaluation of the timing of successful weaning from MV is very challenging in RCCs. This study aims to utilize artificial intelligence algorithms to build predictive models for the successful timing of the weaning of patients from MV in RCCs and to implement a dashboard with the best model in RCC settings. A total of 670 intubated patients in the RCC in Chi Mei Medical Center were included in the study. Twenty-six feature variables were selected to build the predictive models with artificial intelligence (AI)/machine-learning (ML) algorithms. An interactive dashboard with the best model was developed and deployed. A preliminary impact analysis was then conducted. Our results showed that all seven predictive models had a high area under the receiver operating characteristic curve (AUC), which ranged from 0.792 to 0.868. The preliminary impact analysis revealed that the mean number of ventilator days required for the successful weaning of the patients was reduced by 0.5 after AI intervention. The development of an AI prediction dashboard is a promising method to assist in the prediction of the optimal timing of weaning from MV in RCC settings. However, a systematic prospective study of AI intervention is still needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call