Abstract
Pneumatic systems are well known for their advantages and simplicity, and have been applied in various applications. This paper presents the development and experimental evaluation of an intelligent pneumatic cylinder and its control system. The cylinder is designed to have an optical encoder, pressure sensor, valve and a Programmable System on a Chip (PSoC) as the central processing unit. The PSoC will handle I2C communication, input and output data from the analogue to digital converter, counter program and pulse width modulation (PWM) duty cycle. An application tool for a distributed physical human–machine interaction is proposed using an intelligent pneumatic cylinder. The system applied 36 links of the actuator to form an Intelligent Chair Tool (ICT). The control methodology presented contains an inner force loop and an outer position loop implemented using a unified control system driven by PWM to an on/off valve. In this research, four control approaches, i.e., position control, force control, compliance control and viscosity control, were constructed and experimented. The physical properties of various objects were also detected by the intelligent cylinder through the detecting function experiment. Finally, an emulation experiment using mass was carried out and the results clearly show the ability of the intelligent cylinder, and the control approaches towards realization of the future ICT application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.