Abstract

Insects are one of the most diverse group of animals on the planet and are almost ubiquitous. Their walking locomotion has inspired engineers and provided effective solutions for designing transport methods for legged robots. In this paper, we introduce a hexapod walking robot that mimics the design and walking motions of insects. The robot is characterized by small size, light weight, simple structure, and considerably fast walking speed. Three pairs of its legs are driven by three five-degrees-of-freedom (5DOF) soft actuators based on dielectric elastomer (DE) actuators which can provide up to five movements (including three translations and two rotations) within a compact structure. The robot imitates the crawling motion of an insect using the alternating tripod gait. The experiments show that the robot can achieve an average walking speed of 5.2 cm/s (approximately 21 body-lengths per minute) at 7 Hz of actuation frequency on flat rigid surfaces. Furthermore, the robot also demonstrates the omnidirectional capabilities of walking sideways and rotating its body direction, which enhance the potential of applying the proposed robot in practical uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.