Abstract

Traditional non-reinforced masonry walls are particularly prone to failure when subjected to out-of-plane loads and displacements caused by earthquakes. Moreover, singularities such as openings in facades may trigger local collapse, for either in-plane or out-of plane motion. Bearing in mind all the former limitations, STAP, with the scientific support of ICIST and LNEC, has been developing a reduced intrusiveness seismic strengthening methodology for traditional masonry structures. The technique consists in externally applying Glass Fibre Reinforced Polymer (GFRP) composite strips to one or both faces of walls. Connection between GFRP composite strips and masonry substrate is enhanced through specifically detailed anchorages or confinement connectors. This technique has been developed and studied through an extensive series of experimental tests, which are briefly reviewed. This paper focuses more deeply on the latest experimental program, aimed at the characterization of the masonry-GFRP composite interface behaviour. This testing program comprised 29 masonry specimens, strengthened with externally bonded GFRP composite strips with anchorages. The testing variables were the number and spacing of anchorages as well as the loading history type: monotonic or repeated. Results clearly show that the use of anchorages dramatically enhances bond behaviour and that its number and spacing have a significant effect on deformation capacity and a less pronounced effect on strength. Based on experimental evidence, this paper also provides a calculation model and ULS safety assessment procedure for out-of-plane strength of reinforced masonry walls. This calculation model leads to interaction curves on strengthened masonry walls subjected to compression and out-of-plane flexure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.