Abstract

Rapid, efficient, specific and sensitive diagnostic techniques are critical for selecting appropriate treatments for drug-resistant bacterial infections. To address this challenge, we have developed a novel diagnostic method, called the Dual-Cas Tandem Diagnostic Platform (DTDP), which combines the use of Cas9 nickase (Cas9n) and Cas12a. DTDP works by utilizing the Cas9n-sgRNA complex to create a nick in the target strand's double-stranded DNA (dsDNA). This prompts DNA polymerase to displace the single-stranded DNA (ssDNA) and leads to cycles of DNA replication through nicking, displacement, and extension. The ssDNA is then detected by the Cas12a-crRNA complex (which is PAM-free), activating trans-cleavage and generating a fluorescent signal from the fluorescent reporter. DTDP exhibits a high sensitivity (1 CFU/mL or 100 ag/μL), high specificity (specifically to MRSA in nine pathogenic species), and excellent accuracy (100%). The dual RNA recognition process in our method improves diagnostic specificity by decreasing the limitations of Cas12a in detecting dsDNA protospacer adjacent motifs (PAMs) and leverages multiple advantages of multi-Cas enzymes in diagnostics. This novel approach to pathogenic microorganism detection has also great potential for clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.