Abstract

Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call