Abstract

Ruminiclostridium cellulolyticum, an anaerobic cellulolytic bacterium producing an efficient cellulolytic extracellular complex named cellulosome, is a promising host for biofuel production from lignocellulose. This study aims to develop a rapid transformation method for R. cellulolyticum avoiding its restriction system. The CceI restriction system is a major barrier to introduction of foreign DNA into R. cellulolyticum cells. To improve the transformation efficiency of R. cellulolyticum, the gene encoding CceI methyltransferase (M.CceI) of R. cellulolyticum H10 was functionally expressed in Escherichia coli, resulting in an in vivo methylation system for transformation of R. cellulolyticum. The electrotransformation experiments of R. cellulolyticum H10 with the E. coli-Clostridium shuttle plasmid pMTC6showed that the transformation efficiency reached up to 2.6×103 ±0.23×103 CFU per μg plasmid DNA. The results demonstrated that the system is able to confer the M.CceI-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the CceI restriction and efficiently transferred into R. cellulolyticum. In this study, we generated an in vivo methylation system of R. cellulolyticum, allowing interspecies DNA transfer and improving transformation efficiency. This research result will greatly facilitate the metabolic engineering of R. cellulolyticum for biofuel production directly from cellulose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.