Abstract
Thyroid hormones (TH) are essential for regulating a number of diverse physiological processes required for normal growth, development, and metabolism. The US EPA Endocrine Disruptor Screening Program (EDSP) has identified several molecular thyroid targets relevant to hormone synthesis dynamics that have been adapted to high-throughput screening (HTS) assays to rapidly evaluate the ToxCast/Tox21 chemical inventories for potential thyroid disrupting chemicals (TDCs). The uncertainty surrounding the specificity of active chemicals identified in these screens and the relevance to phenotypic effects on in vivo human TH synthesis are notable data gaps for hazard identification of TDCs. The objective of this study was to develop a medium-throughput organotypic screening assay comprised of reconstructed human thyroid microtissues to quantitatively evaluate the disruptive effects of chemicals on TH production and secretion. Primary human thyroid cells procured from qualified euthyroid donors were analyzed for retention of NK2 homeobox 1 (NKX2-1), Keratin 7 (KRT7), and Thyroglobulin (TG) protein expression by high-content image analysis to verify enrichment of follicular epithelial cells. A direct comparison of 2-dimensional (2D) and 3-dimensional (3D) 96-well culture formats was employed to characterize the morphology, differential gene expression, TG production, and TH synthesis over the course of 20 days. The results indicate that modeling human thyroid cells in the 3D format was sufficient to restore TH synthesis not observed in the 2D culture format. Inhibition of TH synthesis in an optimized 3D culture format was demonstrated with reference chemicals for key molecular targets within the thyroid gland. Implementation of the assay may prove useful for interpreting phenotypic effects of candidate TDCs identified by HTS efforts currently underway in the EDSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Toxicological sciences : an official journal of the Society of Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.