Abstract
The high prevalence of dental caries and periodontal disease place a significant burden on society, both socially and economically. Recent advances in genomic technologies have linked both diseases to shifts in the oral microbiota – a community of >700 bacterial species that live within the mouth. The development of oral microbiome transplantation draws on the success of fecal microbiome transplantation for the treatment of gut pathologies associated with disease. Many current in vitro oral biofilm models have been developed but do not fully capture the complexity of the oral microbiome which is required for successful OMT. To address this, we developed an in vitro biofilm system that maintained an oral microbiome with 252 species on average over 14 days. Six human plaque samples were grown in 3D printed flow cells on hydroxyapatite discs using artificial saliva medium (ASM). Biofilm composition and growth were monitored by high throughput sequencing and confocal microscopy/SEM, respectively. While a significant drop in bacterial diversity occurred, up to 291 species were maintained in some flow cells over 14 days with 70% viability grown with ASM. This novel in vitro biofilm model represents a marked improvement on existing oral biofilm systems and provides new opportunities to develop oral microbiome transplant therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.