Abstract
Currently, the only accepted assay with which to detect active Clostridium botulinum neurotoxin is an in vivo mouse bioassay. The mouse bioassay is sensitive and robust and does not require specialized equipment. However, the mouse bioassay is slow and not practical in many settings, and it results in the death of animals. Here, we describe an in vitro cleavage assay for SNAP-25 (synaptosome-associated proteins of 25 kDa) for measuring the toxin activity with the same sensitivity as that of the mouse bioassay. Moreover, this assay is far more rapid, can be automated and adapted to many laboratory settings, and has the potential to be used for toxin typing. The assay has two main steps. The first step consists of immunoseparation and concentration of the toxin, using immunomagnetic beads with monoclonal antibodies directed against the 100-kDa heavy chain subunit, and the second step consists of a cleavage assay targeting the SNAP-25 peptide of the toxin, labeled with fluorescent dyes and detected as a fluorescence resonance energy transfer assay. Our results suggest that the sensitivity of this assay is 10 pg/ml, which is similar to the sensitivity of the mouse bioassay, and this test can detect the activity of the toxin in carrot juice and beef. These results suggest that the assay has a potential use as an alternative to the mouse bioassay for analysis of C. botulinum type A neurotoxin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.