Abstract

A novel experimental technique is developed to measure the in situ surface deformation and temperature of a solid oxide fuel cell (SOFC) anode surface along with the cell electrochemical performance. The experimental setup consists of a NexTech Probostat™ SOFC button cell test apparatus integrated with a Sagnac interferometric optical method and an infrared sensor for in situ surface deformation and temperature measurements, respectively. The button cell is fed with hydrogen or simulated coal syngas under SOFC operating conditions. The surface deformation is measured over time to estimate the anode structural degradation. The cell surface transient temperature is also monitored with different applied current densities under hydrogen and simulated coal syngas. The experimental results are useful to validate and develop SOFC structural durability and electrochemical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.