Abstract
It is well known that, to locate humans in GPS-denied environments, a lower limb kinematic solution based on Inertial Measurement Unit (IMU), force plate, and pressure insoles is essential. The force plate and pressure insole are used to detect foot-ground contacts. However, the use of multiple sensors is not desirable in most cases. This paper documents the development of an IMU-based FGCD (foot-ground contact detection) algorithm considering the variations of both walking terrain and speed. All IMU outputs showing significant changes on the moments of foot-ground contact phases are fully identified through experiments in five walking terrains. For the experiment on each walking terrain, variations of walking speeds are also examined to confirm the correlations between walking speed and the main parameters in the FGCD algorithm. As experimental results, FGCD algorithm successfully detecting four contact phases is developed, and validation of performance of the FGCD algorithm is also implemented.Practitioner Summary: In this research, it was demonstrated that the four contact phases of Heel strike (or Toe strike), Full contact, Heel off and Toe off can be independently detected regardless of the walking speed and walking terrain based on the detection criteria composed of the ranges and the rates of change of the main parameters measured from the Inertial Measurement Unit sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.