Abstract

Drug-releasing implantable scaffolds have been used for a variety of biomedical applications. Sustained release of drugs, including antibacterial drug release after operation and/or treatment, is becoming more important in medical fields. We developed a biodegradable scaffold using air-jet spinning and solvent casting. The implantable scaffold consists of a core scaffold, made of alginate, and an outer layer of polycaprolactone (PCL), both of which are biomaterials with good biocompatibility and biodegradability. The morphology of the PCL/alginate scaffolds was analyzed by scanning electron microscopy and atomic force microscopy. Fourier-transform infrared spectroscopy was performed to confirm the characteristics of the PCL/alginate scaffold. NIH/3T3 cells were used to determine the cytotoxicity of the PCL/alginate scaffold and its effect on cell proliferation. The rate of drug release could be easily controlled by adjusting the degree of crosslinking of the alginate scaffold, which was confirmed by high-performance liquid chromatography. Optimal conditions were reached when the alginate scaffold was crosslinked using a 10% CaCl2 solution, with the amount of the released drug maintained above the minimum inhibitory concentration for the longest period of time. In summary, the implantable PCL/alginate scaffold system developed in this study has the potential for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.