Abstract
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method - with respect to its sensitivity, precision, accuracy, and time-consumption - for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300 degrees C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 x 10(3) ng/g were analyzed. Both mass spectrometric methods were applied within the EU project "Polymeric Elemental Reference Material (PERM)" for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.