Abstract

We have developed a novel detector, referred to as an “α-TOF detector”, for correlated measurements of atomic masses and decay properties of low-yield, short-lived radioactive isotopes using a multi-reflection time-of-flight mass spectrograph. By correlating measured time-of-flight signals with decay events, it will be possible to suppress background events and obtain accurate, high-precision mass and half-life values even in cases of very low event rates. An offline test of the α-TOF detector has shown that the time-of-flight detection efficiency for 5.48 MeV α-rays is more than 90% and yields a time resolution of 250.6(68) ps and an alpha-energy resolution of 141.1(9) keV. Using a two-dimensional spectrum of the correlated α-ray energy and time-of-flight, the α-rays from mixed α sources could be resolved. Subsequent testing using α-emitting nuclei extracted offline from a gas cell provide verification of the α-ray based characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.