Abstract

This paper discusses the practical aspects of data acquisition and signal processing techniques involved while developing an impedance tube. Microphones, data acquisition systems, set of speakers were carefully selected, calibrated, and assembled as one unit. The raw time signal is acquired through a Virtual Instrument (VI) developed in LabVIEW, and the mathematical equations involved in the process are implemented in MATLAB R 2017a. Important considerations involved in these processes have been thoroughly discussed in the paper. The final results contained outliers that were removed by the application of digital filters. The results obtained from the application of different types of digital filters are shown, discussed, and the best combination of filters has been selected. This combination results in a robust and efficient method with an improved low-frequency response (< 250 Hz) which, in a standard commercial impedance tube, was achieved by altering the microphone spacing. The validation was performed by conducting experiments on a blank tube, melamine foam, glass wool, and comparison were made with the result obtained on the set-up of a leading manufacturer, and with the ones reported in works of literature. They show a good match between them which completes the validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.