Abstract

The caveolin scaffolding domain peptide (CSP) is being developed for the therapeutic intervention of a lethal lung disease, idiopathic pulmonary fibrosis. While direct respiratory delivery of CSP7 (a 7-mer fragment of CSP) is considered an effective route, proper formulation and processing of the peptide are required. First, air-jet milling technology was performed in order to micronize the neat peptide powder. Next, the fine particles were subjected to a stability study with physical and chemical characterizations. In addition, the in vivo efficacy of processed CSP7 powder was evaluated in an animal model of lung fibrosis. The results revealed that, with jet milling, the particle size of CSP7 was reduced to a mass median aerodynamic diameter of 1.58 ± 0.1 μm and 93.3 ± 3.3% fine particle fraction, optimal for deep lung delivery. A statistically significant reduction of collagen was observed in diseased lung tissues of mice that received CSP7 powder for inhalation. The particles remained chemically and physically stable after micronization and during storage. This work demonstrated that jet milling is effective in the manufacturing of a stable, excipient-free CSP7 inhalation powder for the treatment of pulmonary fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.