Abstract

Ex-situ perfusion (ESP) is a promising method in preserving vascularized composite tissue allografts (VCAs) with potential to widen donor procurement to larger geographic areas. To optimize the method of preservation, we developed a small animal model to conduct biomolecular investigations. Twenty rat hind limbs (18.2 ± 1.3 g) were procured and connected to our custom-made ESP system. Perfusion pressure and flow parameters were measured with hourly blood gas analysis under near-normothermic (30-35˚C) conditions. Perfusate was prepared with swine hemoglobin (6-9 g/dL) and STEEN Solution. After 6 hours of perfusion, gastrocnemius muscles were evaluated for their histology and metabolomic profiling. Following 3 sets of experiments, perfusion was maintained at an average flow of 0.9 ± 0.24 mL/min and resulted in lactate levels of 3.78 ± 1.02 mmol/L. Metabolomic analysis revealed maintained cellular energy stores (total adenylates perfusion 0.698 ± 0.052 versus baseline 0.685 ± 0.091 umols/ug, p = 0.831), and histologic analysis revealed no evidence of barotrauma or myodegeneration. Rat hind limbs were viable after 6 hours of ESP on our miniaturized ESP system. This study is the first to document the ex-situ hind limb perfusion platform on a rodent model. These experimental findings have potential to guide future research to extend the viable duration of VCA preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.