Abstract

A natural circulation evaluation methodology has been developed to ensure the safety of a sodium-cooled fast reactor (SFR) of 1500 MW adopting the natural circulation decay heat removal system (NC-DHRS). The methodology consists of a one-dimensional safety analysis which can evaluate the core hot spot temperature taking into account the temperature flattening effect in the core, a three-dimensional fluid flow analysis which can evaluate the thermal-hydraulics for local convections and thermal stratifications in the primary system and DHRS, and a statistical safety evaluation method for the hot spot temperature in the core. The safety analysis method and the three-dimensional analysis method have been validated using results of a 1/10 scaled water test simulating the primary system of the SFR and a sodium test simulating a part of the primary system and the DHRS with about a 1/7 scale, and the applicability of the safety analysis for the SFR has been confirmed by comparing with the three-dimensional analysis adopting the turbulence model. Finally, a statistical safety evaluation has been performed for the SFR using the safety analysis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.