Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium associated with life-threatening healthcare-associated infections (HAIs), including burn wound infections, pneumonia and sepsis. Moreover, P. aeruginosa has been considered a pathogen of global concern due to its rising antibiotic resistance. Efficient identification of P. aeruginosa would significantly benefit the containment of bacterial infections, prevent pathogen transmission, and provide orientated treatment options. The accuracy and specificity of bacterial detection are primarily dictated by the biorecognition molecules employed. Lytic bacteriophages (or phages) could specifically attach to and lyse host bacterial cells. Phages’ host specificity is typically determined by their receptor-binding proteins (RBPs), which recognize and adsorb phages to particular bacterial host receptors. This makes RBPs promising biorecognition molecules in bacterial detection. This study identified a novel RBP (Gp130) from the P. aeruginosa phage Henu5. A modified enzyme-linked phage receptor-binding protein assay (ELPRA) was developed for P. aeruginosa detection employing Gp130 as biorecognition molecules. Optimized conditions provided a calibration curve for P. aeruginosa with a range from 1.0 × 103 to 1.0 × 107 CFU/mL, with a limit of detection as low as 10 CFU/mL in phosphate-buffered saline (PBS). With VITEKⓇ 2 Compact system identification (40 positives and 21 negatives) as the gold standard, the sensitivity of ELPRA was 0.950 (0.818–0.991), and the specificity was 0.905 (0.682–0.983) within a 95 %confidence interval. Moreover, the recovery test in spiked mouse serum showed recovery rates ranging from 82.79 %to 98.17%, demonstrating the prospect of the proposed ELPRA for detecting P. aeruginosa in biological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call