Abstract
The goal of this study was to optimize key processes in recreating functional and viable palatal mucosa-like tissue that would be easy to handle and would promote wound healing. Normal human gingival fibroblasts and epithelial cells and a clinically useful biomaterial, CollaTape, were used. Structural and ultrastructural analyses showed that the gingival fibroblasts and epithelial cells adhered to the biomaterial and proliferated. Following a 6-day culture, using 10(5) fibroblasts and 10(6) epithelial cells, a well-organized palatal mucosa-like tissue was engineered. The engineered epithelium displayed various layers, including a stratum corneum, and contained cytokeratin 16-positive cells located in the supra-basal layer. This palatal mucosa-like engineered tissue was designed to meet a variety of surgical needs. The biodegradable collagen membrane (CollaTape) contributed to the flexibility of the engineered tissue. This engineered innovative tissue may contribute to the reconstruction of oral soft-tissue defects secondary to trauma, congenital defects, and acquired diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.