Abstract

The energy spread (ΔE) of an ion source is an important parameter in the production of a finely focused primary ion beam applied in secondary ion mass spectrometry (SIMS). A variable-focusing retarding field energy analyzer (RFEA) has been developed and tested with an Ar+ beam and an oxygen ion beam extracted from a 2.45 GHz microwave ion source, which is developed as a candidate ion source for SIMS applications. The simulation results show that the relative resolution ΔE/E of the designed RFEA reaches 7 × 10−5. The experimental results indicate that a focusing electrode can improve the ΔE measurement results, which is consistent with the simulation results. The ion energy distributions of the Ar+ beam and oxygen ion beam are of Gaussian distribution with the value of ΔE of 3.3 and 2.9 eV, respectively. These results indicate that the designed RFEA is reliable for measuring the ion beam energy spread. The developed RFEA is also used to study the plasma behavior in different settings, which reveals that plasma stability is critical to making a low energy spread ion beam. This paper will present the simulation, design, and test of the variable-focusing RFEA. Preliminary ion beam quality studies with this instrument will also be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call