Abstract

An automated quasi-continuously-operating monitor has been developed for element-selective analysis of adsorbable organic halogens (AOX) in water. After extensive optimization the automatic method was applied to the analysis of standard solutions and real waste water samples to prove its analytical applicability. The new instrument is based on the element-selective analysis of halogens by means of a spectroscopic detection system consisting of a microwave-induced helium plasma excitation source (TM010-type; developed in this laboratory) and the plasma emission detector (PED) which operates with oscillating narrow-band interference filters. After enriching the organic components on activated charcoal and pyrolysis in an oxygen stream at 950 degrees C, in accordance with DIN/EN 38409,H14/1485, interfering CO2 and H2O gas generated during combustion is removed from the analytes in the so-called ELSA-system (element-selective AOX-analyzer). For focused injection into the plasma excitation source the analytes (hydrogen halides) are trapped in a deactivated fused silica capillary at -180 degrees C; this is followed by identification and quantification on the basis of element-specific emission of radiation in the VIS and NIR-region (chlorine 837.6 nm, fluorine 685.6 nm). Bromine and iodine could not be detected with satisfactory inter-element selectivity, because of spectral interferences caused by matrix elements, and so results from the respective single-element investigations for determination of AOBr and AOI are not presented. The procedure has been validated and the analytical performance has been examined by calibration with p-chlorophenol and p-fluorophenol. The limit of detection was 1.1 microg (absolute) for chlorine and 6.6 microg (absolute) for fluorine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call