Abstract

A procedure for the direct determination of arsenic in diluted serum by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS) is reported. Laser radiation needed to excite As at 193.696 and 197.197 nm is generated as the second anti-Stokes stimulated Raman scattering output of a frequency-doubled dye laser operating near 230.5 and 235.5 nm, respectively. Two different LEAFS schemes have been utilized and provide limits of detection of 200-300 fg for As in aqueous standards. When measurements of serum samples diluted 1:10 with deionized water are performed, a stable background signal is observed that can be accounted for by taking measurements with the laser tuned off-wavelength. No As is detected in any of the bovine or human serum samples analyzed. Measurements of 100 pg/mL standard additions of As to a diluted bovine serum sample utilizing either inorganic or organic As species demonstrate a linear relationship of the fluorescence signal to As spike concentration, but exhibit a sensitivity of approximately half that observed in pure aqueous standards. The limit of detection for As in 1:10 diluted serum samples is 65 pg/mL or 650 fg absolute mass, which corresponds to 0.65 ng/mL As in undiluted serum. To our knowledge, the ETA-LEAFS procedure is currently the only one capable of directly measuring As in diluted serum at these levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call