Abstract
Deep learning algorithm emerges as a new method to take the raw features from large dataset and mine their deep implicit relations, which is promising for solving traditional physical challenges. A particularly intricate and difficult challenge is the energy loss mechanism of energetic ions in solid, where accurate prediction of stopping power is a long-time problem. In this work, we develop a deep-learning-based stopping power model with high overall accuracy, and overcome the long-standing deficiency of the existing classical models by improving the predictive accuracy of stopping power for ultra-heavy ion with low energy, and the corresponding projected range. This electronic stopping power model, based on deep learning algorithm, could be hopefully applied for the study of ion-solid interaction mechanism and enormous relevant applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.