Abstract

Two modules of a low impedance electron-beam (e-beam) machine were developed to pump a 200-J, 70-ns KrF laser from both sides. The laser was designed as the power amplifier of a picosecond, terawatt excimer laser system, which will be applied to a basic physical research on extreme ultraviolet lasers. Each driving circuit of the e-beam diode was a 2.8 double parallel plate Blumlein with a 500-kV rail gap as the main switch. The energy deposited in the 42-iota laser gain region was measured by several diagnostics energy transfer efficiency and the spatial uniformity of energy deposition with the guide magnetic field of 1 kG. The triggered operation of 500-kV rail gaps, which is essential for amplifier system synchronization, was realized by the ultraviolet laser irradiation along the rail-gap axis with reduced switching time and jitter of 20 and 1.9 ns, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.